断に対して不変に残される要素間の関係をその内容とするものである。次に射影幾何学のこの二つの公理群に次の三つの公理群を加える時、吾々が普通計量幾何学と呼び慣している処のものを得る。即ち合同の公理、平行線公理及び連続の公理がそれである。処が平行線公理、即ち同一平面内に於て一点を過って任意の直線と交わらない直線は必ず唯一つある、ということを意味するユークリッドの公理は、之と矛盾する他の公理によって置き換えられることも可能である。この時ユークリッド幾何学に対して非ユークリッド幾何学を得る。向のような条件を充す平行線が全く許されない時リーマン・ヘルムホルツの幾何学を、又かかる平行線が無限に存在しその一双が特に平行線と名づけられる時ロバチェーフスキー・ボーヤイの幾何学を得るのは何人も知る処であろう。抛物線的、球面的及び楕円的並びに双曲線的幾何学として普通区別される処のものである(Sommerville, Non−euclidean Geometrie, p. 89, etc.)。さてヒルベルトの云うように如何なる公理群も他の公理群とは独立であるとすれば、吾々は任意の組み合せによって生じる公理体系の
前へ
次へ
全79ページ中9ページ目
小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ
登録
ご利用方法
ログイン
携帯用掲示板レンタル
携帯キャッシング