の意味は後に明らかとなる――特別の位置を占める幾何学である、ということを暗示するものと云ってよいであろう(〔Klein, Elementarmathematik v. h. S−P. aus S. 237 ff.; Riemann, Die inaugurale Dissertation zu Go:ttingen, etc.〕)。次に結合の公理と順序の公理の上に立つものは射影幾何学である。普通之に連続の公理が加えられるのであるがヴェブレン・ヤングなどが rational space を考えたような意味に於て連続を解するならばこの公理は不必要となる(Veblen−Young, Projective Geometry, I. p. 99 ff.)。併し茲には後に触れるであろう問題が含まれていることだけを注意しよう。さて点、直線、平面等の要素に於て、低次の二つの要素が一つの高次の要素を決定すること、例えば二点が一直線を決定すること、を射影と名づけ、高次の二つの要素が一つの低次の要素を決定すること、例えば二平面が一直線に於て交わること、を截断と名づけるならば、射影幾何学とはかかる射影並びに截
前へ
次へ
全79ページ中8ページ目
小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ
登録
ご利用方法
ログイン
携帯用掲示板レンタル
携帯キャッシング