ならない。又円錐曲線の中点、直径、平行、方向、等の概念も許される。それ故類同幾何学は量的であると云う外はない。ライプニツの位置解析も之に準じて観察してよいと思う。さて併し吾々は茲に至って計量幾何学とは異る処の量的幾何学が少くとも一つは存在するということを識った。今両者を区別するものは座標に依るか否かである。併し縦え座標を用いないにしても量的幾何学は解析的でないのではない。クラインの云ったように(前を見よ)解析的とは必ずしも座標的であることを意味しない。併し又すでにその場合明らかにしたように之が座標と無関係であるというのではない。であるから座標を含むか否かは解析に対して根本的な区別ではない。計量に対する根本的な区別とはならない。それ故又量的幾何学の――それは計量を含むものと定義されてある――根本的な区別とはならない。私は量的幾何学を更に分類する理由を発見しない。
 之に反して質的幾何学の定義は消極的に――計量を含まない[#「ない」に傍点]幾何学として――与えられてある。之を検べて見なければならない。ケーリが凡ての幾何学は射影幾何学であると云ったが、射影幾何学が又計量幾何学を含むならばその
前へ 次へ
全79ページ中17ページ目


小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ 登録 ご利用方法 ログイン
携帯用掲示板レンタル
携帯キャッシング