限りに於て量的であると考えられないでもない。射影幾何学に於ても座標があるではないかというであろう。併しながら計量幾何学の座標と射影幾何学の座標――仮に射影的座標と呼ぶ――とは本質的に区別されなければならぬ。今数とは独立な二つの幾何学的構成によって一直線上に点の位置を決定することを夫々和及び積と定義すれば、任意の単位をとる時、この直線上の或る一点を除いた凡ての点は、この和及び積に関して一つの領域(field)をなすと考えられる。然るに他方に於て数体系も同じ領域を造る数から成り立ち得るから、数体系は又一つの領域と考えられる。それ故もし直線上の点の領域と数の領域とを一対一の関係―― isomorphie の関係――に置くならば、直線上のかの一点を除いた凡ての点を数に対応せしめて之を数と全く同様に論じることが出来る筈である。之を射影幾何学に於ては非等質的座標という。今若し除かれてあった特異点――無窮遠点――の特異性を取り去るためには各々の点に夫々一双の数を対応せしめるならば、直線上の凡ての点は例外なく数の一双と対応することが出来る。之を等質的座標という。さてこのような射影的座標はデカルトの座標
前へ
次へ
全79ページ中18ページ目
小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ
登録
ご利用方法
ログイン
携帯用掲示板レンタル
携帯キャッシング