運動によって二つの要素が等しいと認められるためには運ばれたる要素がその運動の間に於て量的に不変であったことを予想することが必要である。即ち一般に要素は自らに同じである――等しいと区別せよ――ということが予め承認されてなければならぬ。ヘルムホルツが幾何学は剛体の自由運動を許すというが、この剛体を純幾何学的に定義する時、この様な自らに同じい要素を考えねばならぬと思う(Helmholtz, Ueber die Tatsache, welche der Geometrie zugrunde liegen. 参照)。併し自らに同じい要素というが何によって吾々はそれが不変であることを知るか。それには或る一定の単位が与えられて之を用いて計量した結果が不変であることを必要とする。それ故自らに同じい要素とはそれ自身計量の単位を意味するに外ならない。従って線や角の合同とは単位による計量を意味する外はない。合同の公理[#「合同の公理」に傍点]は計量を云い表わす。又アルキメデス公理はこの場合このような単位によって或る与えられたる要素の量を計量することそのことを意味する。然らば一歩進めて連続の公理はどうであるか
前へ 次へ
全79ページ中11ページ目


小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ 登録 ご利用方法 ログイン
携帯用掲示板レンタル
携帯キャッシング