Qが0の場合でもいいじゃないかといった方は……。0は既に出ていますよ。Sは0であると、さっき導き出したばかりです)――さて、これだけでは決定的でないが、もう一つ目をつけるべきところがある。それは七段目の右端の数字も、同じく0であることだ。この0は、除数のLと、答の一位の数のNとを掛け合わせた結果出てきたのである。するとさっきと同じ理窟から、LとNとのどっちかが5であり、偶数であらねばならぬこととなる。
そこでLが5であることが確定される。なぜなれば、前にはLとQのいずれかが5か偶数かとあり、今またLとNのいずれかが5か偶数かとなったからには、この両条件を共通に満足すべき答としては、Lが5である場合しかない(また聞えましたよ、誰ですか。Lが偶数であってもいいではないかといいましたね。とんでもないことです。Lが偶数なら、初めの条件によりQは5となります。すると後の条件のとき、つまりLとNのいずれかが5であり偶数であるというときには困ってしまうではありませんか)。とにかくこうしてLは5、そしてQとNとは偶数だということが分った。早速これを書き入れると上のようになる。
Q1N
______
1M5)QTPAI
QI0
―――――
QPA
1M5
――――
111I
10N0
――――
MI
このへんで貴君が「虫喰い算て面白いなあ」と心臓をどきどきされたとしたら、それは既に虫喰い算の「鬼」が貴君にのり移ったことの証拠である。一旦この「鬼」にとりつかれたら、お気の毒ながら(?)、貴君はもう一生涯、虫喰い算のファンとして離れられなくなる。決して嚇《おど》かすわけではないが、事実がそうだから仕方がない。
余計な話はやめて、次へ進む。第四の鍵はどこにあるか。四段目のQであるが、この下に1がある。その下にも1がある。するとQから1を引いて1が出たわけだ。するとQは1と1との和の2であるか、それともQは下位へ1を貸してあって、本当は3であるかもしれないと臆測される。つまりQは2又は3であらねばならぬと。ところが、どっこい、Qは2であらねばならぬ。3であることは許されない。なぜならば、QとNとは共に偶数なりと、さっき決定したばかりだから。
21N
___
前へ
次へ
全36ページ中10ページ目
小説の先頭へ
文字数選び直し
海野 十三 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ
登録
ご利用方法
ログイン
携帯用掲示板レンタル
携帯キャッシング