除数に答の一位の数である3をかけたとき、その計算の一位の数は9となっている(上から五段目の右端)。つまり、3に或る数(除数の一位)をかけて、答の一位に9が出てくるためには、その或る数は3の外にないのだ。33が9であるからだ。そこで上のように、穴を一つうめることができた。
□3
____
□3)949
□□
――――
□□9
□□9
――――
0
さて次に、答の十位の数は、3よりも少い2か1かのどっちかであることに気がつく。なぜなれば、除数と答の一位をかけた計算は、上から五段目であって、三桁の数□□9 だ。ところが、上から三段目の、答の十位をかけた計算は□□となっていて二桁の数である。すなわち、答の十位の数は2か1かのどっちかに制限される。これで余程探求の範囲は狭くなった。
一方、除数の十位の□は、4か、4よりも大きい数でなければならぬことに気がつく。なぜなれば、上から五段目のところで、除数の□3に、答の一位の3をかけると、一位は9となる。次に除数の十位に答の一位の3をかけたものは、百位と十位との二桁ものとなるが、これは除数の十位の数が3以下では二桁とならない(つまり、33が9や23が6では二桁とならない。どうしても34の12[#「12」は縦中横]以上でなければならぬ)。そこで除数の十位の穴は、4か、4よりも大きい数だと分る。
そこで今度はもう一度、答の十位の計算、すなわち上から三段目へ戻る。前に述べたように、答の十位は1か2かの何れかである。ところが、これが2であっては、今しがた導き出したところの、「除数の十位の数は4以上」という関係がぶちこわされる。仮りにそれが最低数の4とすれば、答の十位の2をかけると 43×2=86 となるから、被除数の94[#「94」は縦中横]からこれを引くと、残りは8となって一桁となる。すなわち上から第四段目は□□9 とはならずして□9 の形となり、桁があわぬ。従って答の十位は1か2かということであったが、これは1であらねばならぬと確定する。さあこれで、大体解けた。今まで解けたところを穴に入れて書いてみると上のとおりになる。
13
____
□3)949
□3
――――
□19
□19
――――
0
これでみるとおり、答の十位が1
前へ
次へ
全36ページ中7ページ目
小説の先頭へ
文字数選び直し
海野 十三 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ
登録
ご利用方法
ログイン
携帯用掲示板レンタル
携帯キャッシング