は一切の幾何学を残りなく分類することが出来る(〔F. Klein, Elementarmathematik von ho:heren Standpunkt aus 2. Kap. III〕)。併しながら第一に解析とは何か。今の場合この概念は無条件に導き入られてあるのであるが私は之を吟味しなければならない。普通数学の対象に数が導き入れられる時かかる数学を解析と呼ぶとも考えられるが、数は例えば有理整数論などに於てのように算法(Operation)を有つものの単なる符号と見做されることもある。併しもとより吾々は符号の算法を解析的とは云わない。即ち数が diskret と考えられる限り之によっては解析は生じて来ない。解析的とはそれ故数の連続が導き入れられる時の方法であると考えなければならない。処が数の連続が導入されるということは幾何学に於ては座標が与えられることに外ならない。向に挙げた変換式のxyz等とは実は座標軸を意味していたのである。勿論このような表現式は実際の座標を必要とはしないものであって単に「形式的」な現わし方に過ぎないとも云い得るが、もし凡ゆる意味に於て座標と関係のないものならばこ
前へ
次へ
全79ページ中3ページ目
小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ
登録
ご利用方法
ログイン
携帯用掲示板レンタル
携帯キャッシング