めに幾何学なるものの概観を得ることが必要と思われる。恐らく幾何学には無限の種類があるかも知れない。併し何れも幾何学なる名に於て統一されている以上それを一貫する何ものかがあってそれがその区別を与えているのでなければならぬ。吾々は之を攫むことによって幾何学を分類することが出来る筈である。クラインによれば凡ての幾何学は夫々或る一定の形を持った変換に対して不変に残されるものの不変量理論(Invariantentheorie)と考えられるが、クラインは之を解析的に云い表わすことによって幾何学の分類を与えようとした。
例えば類同幾何学は
[#ここから3字下げ]
[#式(fig43263_01.png)入る]
[#ここで字下げ終わり]
なる類同変換に関する不変量理論であり、又射影幾何学は
[#ここから3字下げ]
[#式(fig43263_02.png)入る]
[#ここで字下げ終わり]
なる射影的変換に関する夫である。これらの変換は夫々一つの変換群をなすのであるから一般的に云う時各々の変換群に対して一つずつの幾何学が成り立つわけである。即ち解析に訴えることによって更に又群の概念を借りることによって吾々
前へ 次へ
全79ページ中2ページ目


小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ 登録 ご利用方法 ログイン
携帯用掲示板レンタル
携帯キャッシング