公理に含まれる根本的な予想に従って分類することに思い至らなければならない。計量を含む幾何学――所謂計量幾何学即ち座標幾何学は少くともその一部分である――を一般に量的[#「量的」に傍点]幾何学と名づけ、之に反して計量を含まぬ幾何学を一般に質的[#「質的」に傍点]幾何学と名づける。かくて私は始めて本質的な分類を得ると思う。何となれば幾何学が質的であるか量的であるかはそれが本質的であるか本質的でないかの問題となることをやがて吾々は知るであろうから。
幾何学の分類に就いてまだ一つの重大な問題が残されている。私は之に到達することを試みよう。まず注意すべきはライプニツがその「位置解析」という項に於て、代数は合同を即ち量を、之に反して位置解析は類同を即ち形を、従って又質を論じる数学であると述べ、「このような考え方は新しい計算法を示すものである」と云っていることである。それはライプニツによれば「代数的計算とは全く別のものであり、又その記号に於てもその応用とその算法に於ても全く新しいものである。」彼は之を位置の解析と名づけた。「何となればそれは直接に位置を云い表わし、而も形を実際に画くことなくして記
前へ
次へ
全79ページ中14ページ目
小説の先頭へ
文字数選び直し
戸坂 潤 の一覧に戻る
作家の選択に戻る
◆作家・作品検索◆
トップページ
登録
ご利用方法
ログイン
携帯用掲示板レンタル
携帯キャッシング